FUNCTORIAL SEMANTICS 24

IVAN DI LIBERTI

rules

- Hand your exercises by the **end of the course** via email. In order to make my life easier, make sure to include the word **FUN24 in the subject**.
- Pick at least one exercise from each of the yellow groups.
- You must charge at least 2 full batteries!
- *Example*. The vector of exercises [3,7,8,13,16] would pass this sheet.

EXERCISES

categories

Exercise 1 (**D**). How many idempotent monads T : Set \rightarrow Set can you find on the category of sets? Describe them all.

Exercise 2 (**D**). Let T : Set \rightarrow Set be a cocontinous monad. Prove or provide a counterexample for the following statement: there exists a monoid M such that $T \cong M \times (-)$ as monads.

Exercise 3 (**D**). A graph (E, V, s, t) is the data of two sets E, V and two functions $s, t : E \Rightarrow V$. Morphisms of graphs are defined as expected, and so is the category Gra of graphs. Can you find a full subcategory C containing two objects such that every cocontinuous functor Gra \rightarrow Set is uniquely determined by its value on C?

Exercise 4 (**D**). Let \mathcal{A} be a cocomplete category and $a \in \mathcal{A}$ be a dense object, i.e. the family consisting of the single object *a* forms a dense generating set. Show that \mathcal{A} admits a faithful right adjoint $\mathcal{A} \to \mathbf{Set}$ and exhibit a category \mathcal{A} for which it is not an equivalence of categories.

Exercise 5 (\blacksquare), \blacksquare). Let \mathcal{A} be a cocomplete category with a dense generating set. Show that \mathcal{A} is complete.

Exercise 6 (**D**). In the diagram below all the categories are λ -accessible and so are the functors f, g. Assume also that C is cocomplete. Justify that $lan_g f$ exists and is accessible too.

Date: March 25, 2024.

universal algebra

Exercise 7 (**I**), **P**). Consider the categories Grp, Ab of groups and abelian group respectively.

• Describe the Lawvere theories axiomatizing them.

- Show that the inclusion i: Ab \hookrightarrow Grp is a morphism of varieties.
- Describe the morphism of Lawvere theories that induce *i*.

Exercise 8 (, Consider the categories Grp, Ab of groups and abelian group respectively.

- Describe the **Set** monads axiomatixing them.
- Show that the inclusion i: Ab \hookrightarrow Grp is a morphism of varieties.
- Describe the morphism of monads that induce *i*.

Exercise 9 (**D**), **P**). Recall that the category SLat of suplattices is monadic over **Set**. Following the standard construction that given a monad produces a (possibly large) algebraic theory, can you describe an equational presentation of the category of suplattices?

Exercise 10 (**D**). Let T : Set \rightarrow Set be a finitary monad with some model with two distinct elements, show that its unit is injective.

Exercise 11 (**D**). For every finitary monad T : Set \rightarrow Set construct a finitary polynomial monad P_T : Set \rightarrow Set and a morphism of monads $P_T \rightarrow T$ which is pointwise surjective.

sketches

Exercise 12 (**D**). Using the technology of the course show that every abelian group embeds in a divisible one.

Exercise 13 (■), ■). Provide a sketch axiomatizing the category of fields. Could it be a limit sketch?

Exercise 14 (\blacksquare), \blacksquare). Given limit sketches S_1, S_2 define a symmetric tensor product $S_1 \otimes S_2$ in such a way that,

 $\mathsf{Mod}(\mathcal{S}_1 \otimes \mathcal{S}_2, \mathbf{Set}) \simeq \mathsf{Mod}(\mathcal{S}_1, \mathsf{Mod}(\mathcal{S}_2, \mathbf{Set})).$

Exercise 15 (**D**). Show that the category of Banach spaces and non expansive maps is locally presentable. What about the category of Hilbert spaces?

Exercise 16 (**D**). Show that the category of topological spaces and the category of suplattices are not locally presentable.

Exercise 17 (**D**). Show that if \mathcal{A} is locally finitely presentable, so are $\mathcal{A}^{\rightarrow}$ and $\mathcal{A}_{/a}$.

The riddle (Givant, **\triangle**). A finitary monad T : **Set** \rightarrow **Set** is *stable* if every algebra is free. (Assuming choice) show that there exactly four families of finitary stable monads T : **Set** \rightarrow **Set**. *Comment*. If you solve it with category theoretic methods, you can publish it.

2